Uniqueness Theorems for Entire Functions of Exponential Type

A. M. Trembinska
Department of Mathematics, Northwestern University, Evanston, Illinois 60201, U.S.A.
Communicated by Oved Shisha

Received October 18, 1983

Carlson's theorem [1, p. 153] states that an entire function of exponential type τ less than π must vanish identically if it vanishes at the integers. Let $f(z)=u(z)+i v(z)(u, v$ real $)$. It is not enough to assume that $u(m)=0$, $m=0, \pm 1, \pm 2, \ldots$, in order to conclude $f(z) \equiv 0$, but it is known to be sufficient to have both $u(m)=0$ and $u(m+i)=0, m=0, \pm 1, \pm 2, \ldots$ (see $|2|)$. Here I show that if $f(z)$ satisfies mild restrictions on its growth on the real axis and $u(m)=0$, then $f(z) \equiv 0$ provided that $u(m+i)=0$ or $v(m+i)=0$, except on a set of integers of density less than $1-(\tau / \pi)$. Hence I consider a somewhat more restricted class of functions than in [2], but obtain much sharper uniqueness theorems.

I thank Professor R. P. Boas for suggesting the problem.

Theorem 1. Let $f(z)$ be an entire function of exponential type τ less than π. Let $f(m)=u(m)+i v(m), u(m)=0, m=0, \pm 1, \pm 2, \ldots,|f(m)|<M$, $m=0, \pm 1, \pm 2, \ldots$, and $\sum_{-\infty}^{\infty}|v(m)|<\infty$. If $u(m+i)=0$ except on a set of points of density less than $1-(\tau / \pi)$, then $f(z) \equiv 0$.

Proof. Since $f(z)$ is of exponential type τ less than π and is bounded at the integers, it follows from Cartwright's theorem [1, p. 180] that $f(x)$ is bounded for all real x. Hence $f(z)$ has the representation

$$
f(z)=f^{\prime}(0) \frac{\sin \pi z}{\pi}+f(0) \frac{\sin \pi z}{\pi z}+\frac{z \sin \pi z}{\pi} \sum_{n \neq 0} \frac{(-1)^{n} f(n)}{n(z-n)}
$$

(see [1], p. 221). Set $z=m+i$, keeping in mind that $f(m)=i v(m)$ and $\sin \pi(m+i)=i(-1)^{m} \sinh \pi$, to obtain

$$
\begin{aligned}
f(m+i)= & v^{\prime}(0)(-1)^{m+1} \frac{\sinh \pi}{\pi}+i u^{\prime}(0)(-1)^{m} \frac{\sinh \pi}{\pi} \\
& +v(0)(-1)^{m+1} \frac{m \sinh \pi}{\pi\left(m^{2}+1\right)}-i v(0)(-1)^{m+1} \frac{\sinh \pi}{\pi\left(m^{2}+1\right)} \\
& +m(-1)^{m+1} \frac{\sinh \pi}{\pi} \sum_{n \neq 0} \frac{(-1)^{n} v(n)}{n(m-n+i)} \\
& +i(-1)^{m+1} \frac{\sinh \pi}{\pi} \sum_{n \neq 0} \frac{(-1)^{n} v(n)}{n(m-n+i)} .
\end{aligned}
$$

Multiply both sums on the right of the above equation by $(m-n)-i /(m-n)-i$ to obtain

$$
\begin{aligned}
f(m+i)= & v^{\prime}(0)(-1)^{m+1} \frac{\sinh \pi}{\pi}+i u^{\prime}(0)(-1)^{m} \frac{\sinh \pi}{\pi} \\
& +v(0)(-1)^{m+1} \frac{m \sinh \pi}{\pi\left(m^{2}+1\right)}-i v(0)(-1)^{m+1} \frac{\sinh \pi}{\pi\left(m^{2}+1\right)} \\
& +\frac{m \sinh \pi}{\pi} \sum_{n \neq 0} \frac{(-1)^{m-n+1}(m-n) v(n)}{n\left[(m-n)^{2}+1\right]} \\
& -\frac{i m \sinh \pi}{\pi} \sum_{n \neq 0} \frac{(-1)^{m-n+1} v(n)}{n\left[(m-n)^{2}+1\right]} \\
& +\frac{i \sinh \pi}{\pi} \sum_{n \neq 0} \frac{(-1)^{m-n+1}(m-n) v(n)}{\left.n \mid(m-n)^{2}+1\right]} \\
& +\frac{\sinh \pi}{\pi} \sum_{n \neq 0} \frac{(-1)^{m-n+1} v(n)}{n\left[(m-n)^{2}+1\right]} .
\end{aligned}
$$

We then have

$$
\begin{aligned}
\operatorname{Re} f(m+i)= & u(m+i)=\frac{-\sinh \pi}{\pi}\left[v^{\prime}(0)(-1)^{m}+v(0)(-1)^{m} \frac{m}{m^{2}+1}\right. \\
& \left.+m \sum_{n \neq 0} \frac{(-1)^{m-n}(m-n) v(n)}{n\left[(m-n)^{2}+1\right]}+\sum_{n \neq 0} \frac{(-1)^{m-n} v(n)}{n\left[(m-n)^{2}+1\right]}\right] \\
\operatorname{Im} f(m+i)= & v(m+i)=\frac{-\sinh \pi}{\pi}\left[u^{\prime}(0)(-1)^{m-1}-v(0) \frac{(-1)^{m}}{m^{2}+1}\right. \\
& \left.+\sum_{n \neq 0} \frac{(-1)^{m-n}(m-n) v(n)}{n\left[(m-n)^{2}+1\right]}-m \sum_{n \neq 0} \frac{(-1)^{m-n} v(n)}{n\left[(m-n)^{2}+1\right]}\right] .
\end{aligned}
$$

By [4, p. 13] with $a=b=1, l=\pi$,

$$
i \sum_{n \neq 0} \frac{(-1)^{m-n}(m-n)}{(m-n)^{2}+1} \sin (m-n) x=-i \frac{\pi \sinh x}{\sinh \pi}, \quad-\pi<x<\pi .
$$

Since the convolution of the Fourier coefficients of two functions yields the Fourier coefficients of the product of the functions (see [3], p. 23) we have that

$$
\sum_{n \neq 0} \frac{(-1)^{m-n}(m-n) v(n)}{n\left|(m-n)^{2}+1\right|}
$$

is the m th Fourier coefficient of

$$
\frac{-i \pi \sinh x}{\sinh \pi} \sum_{n \neq 0} \frac{v(n)}{n} e^{i n x}, \quad-\pi<x<\pi .
$$

Similarly, by $\mid 4$, p. 12|, we have, for $a=b=1, l=\pi$,

$$
\sum_{-\infty}^{\infty} \frac{(-1)^{m-n}}{(m-n)^{2}+1} \cos (m-n) x=\frac{\pi \cosh x}{\sinh \pi}, \quad-\pi \leqslant x \leqslant \pi
$$

so that

$$
\sum_{n \neq 0} \frac{(-1)^{m-n} v(n)}{n\left|(m-n)^{2}+1\right|}
$$

is the m th Fourier coefficient of

$$
\frac{\pi \cosh x}{\sinh \pi} \sum_{n \neq 0} \frac{v(n)}{n} e^{i n x}, \quad-\pi \leqslant x \leqslant \pi
$$

Also, $v(0)(-1)^{m} m /\left(m^{2}+1\right)$ is the m th Fourier coefficient of

$$
i v(0) \sum_{-\infty}^{\infty} \frac{(-1)^{m} m}{m^{2}+1} \sin m x=\frac{-i v(0) \pi \sinh x}{\sinh \pi}, \quad-\pi<x<\pi
$$

Since $a_{m}=(-1)^{m}, m=0, \pm 1, \pm 2, \ldots$, are not the Fourier coefficients of any absolutely integrable function, we must have $v^{\prime}(0)=0$.

Hence,

$$
\begin{aligned}
u(m+i)= & \frac{-\sinh \pi}{\pi}\left[v(0)(-1)^{m} \frac{m}{m^{2}+1}+m \sum_{n \neq 0} \frac{(-1)^{m-n}(m-n) v(n)}{n\left[(m-n)^{2}+1\right]}\right. \\
& \left.+\sum_{n \neq 0} \frac{(-1)^{m-n} v(n)}{n\left[(m-n)^{2}+1\right]}\right]
\end{aligned}
$$

is the m th Fourier coefficient of

$$
\begin{aligned}
F(x)= & \frac{-\sinh \pi}{\pi}\left[\frac{-i v(0) \pi \sinh x}{\sinh \pi}+\frac{1}{i} \frac{d}{d x}\left\{\frac{-i \pi \sinh x}{\sinh \pi} \sum_{n \neq 0} \frac{v(n)}{n} e^{i n x}\right\}\right. \\
& \left.+\frac{\pi \cosh x}{\sinh \pi} \sum_{n \neq 0} \frac{v(n)}{n} e^{i n x}\right], \quad-\pi<x<\pi
\end{aligned}
$$

Simplifying, we find that $u(m+i)$ is the m th Fourier coefficient of

$$
\begin{aligned}
F(x)= & i v(0) \sinh x+\cosh x \sum_{n \neq 0} \frac{v(n)}{n} e^{i n x} \\
& +i \sinh x \sum_{n \neq 0} v(n) e^{i n x}-\cosh x \sum_{n \neq 0} \frac{v(n)}{n} e^{i n x}, \\
F(x)= & i \sinh x \sum_{-\infty}^{\infty} v(n) e^{i n x}, \quad-\pi<x<\pi .
\end{aligned}
$$

The hypothesis implies that $\int_{-\tau}^{\tau} F(x) e^{i \lambda_{n} x}=0$ for a sequence of integers λ_{n} of density greater than τ / π. By [1, p. 236] (with a change of variable) $F(x)=i \sinh x \sum_{-\infty}^{\infty} v(n) e^{i n x}$ vanishes for almost all x in $(-\pi, \pi)$. Since $\sinh x=0$ if and only if $x=0$, we conclude $v(n) \equiv 0$. Hence $f(n)=u(n)+i v(n)=0$ for all n, and by Carlson's theorem $f(z) \equiv 0$.

Theorem 2. With the hypotheses of Theorem 1 , if $v(m+i)=0$ except on a set of points of density less than $1-(\tau / \pi)$, then $f(z) \equiv 0$.

Proof. Recall that

$$
\begin{aligned}
v(m+i)= & \frac{-\sinh \pi}{\pi}\left[u^{\prime}(0)(-1)^{m+1}-v(0) \frac{(-1)^{m}}{m^{2}+1}\right. \\
& +\sum_{n \neq 0} \frac{(-1)^{m-n}(m-n) v(n)}{n\left[(m-n)^{2}+1\right]} \\
& \left.-m \sum_{n \neq 0} \frac{(-1)^{m-n} v(n)}{n\left[(m-n)^{2}+1\right]}\right]
\end{aligned}
$$

Proceeding as in the proof of Theorem 1, we conclude that $v(m+i)$ is the m th Fourier coefficient of

$$
\begin{aligned}
G(x)= & \frac{-\sinh \pi}{\pi}\left[-v(0) \frac{\pi \cosh x}{\sinh \pi}-i \frac{\pi \sinh x}{\sinh \pi} \sum_{n \neq 0} \frac{v(n)}{n} e^{i n x}\right. \\
& \left.-\frac{1}{i} \frac{d}{d x}\left\{\frac{\pi \cosh x}{\sinh \pi} \sum_{n \neq 0} \frac{v(n)}{n} e^{i n x}\right\}\right], \quad-\pi<x<\pi
\end{aligned}
$$

Simplifying, we find that $v(m+i)$ is the m th Fourier coefficient of

$$
\begin{aligned}
G(x)= & v(0) \cosh x+i \sinh x \sum_{n \neq 0} \frac{v(n)}{n} e^{i n x}-i \sinh x \sum_{n \neq 0} \frac{v(n)}{n} e^{i n x} \\
& +\cosh x \sum_{n \neq 0} v(n) e^{i n x}, \\
G(x)= & \cosh x \sum_{-\infty}^{\infty} v(n) e^{i n x}, \quad-\pi<x<\pi .
\end{aligned}
$$

Now continue as in the proof of Theorem 1, with $F(x)$ replaced with $G(x)$.
The type π is critical, as is shown in Theorem 3.
Theorem 3. There exist entire functions $f(z)$ of exact type π with $f(m)=u(m)+i v(m), u(m)=0, m=0, \pm 1, \pm 2, \ldots,|f(m)|<M, m=0, \pm 1$, $\pm 2, \ldots$, and $\sum_{-\infty}^{\infty}|v(m)|<\infty$, such that either (i) $v(m+i)=0$, or (ii) $u(m+i)=0$, in either case except on a set of integers $\left\{m_{n}\right\}$ of density zero, but $f(z) \not \equiv 0$.

Proof. (i) Consider

$$
f(z)=i \int_{-\pi}^{\pi} \frac{\sin z t}{\cosh t} \sum_{n} b_{n} \sin m_{n} t d t
$$

where $b_{n} \geqslant 0, \sum_{n} b_{n} m_{n}^{2}<\infty$, and the set of integers $\left\{m_{n}\right\}$ has density zero. By $[1, \mathrm{p} .108] f(z)$ is of exact type π. Since the integrand is real on the real axis, $f(m)$ is pure imaginary, and $u(m)=0$ for all m. Also, $|\sin m t| / \cosh t \leqslant 1$, so that $|f(m)| \leqslant \sum_{n}\left|b_{n}\right| \int_{-\pi}^{\pi}\left|\sin m_{n} t\right| d t \leqslant 2 \pi \sum_{n} b_{n}<\infty$, and $|f(m)|$ is bounded for all m. Integrating $f(m)$ by parts twice, we find that

$$
\begin{aligned}
f(m)= & \frac{i}{m^{2}} \int_{-\pi}^{\pi} \frac{\sin m t}{\cosh t} \sum_{n} b_{n} \sin m_{n} t d t \\
& +\frac{i}{m^{2}} \int_{-\pi}^{\pi} \frac{\sin m t}{\cosh t} \sum_{n} b_{n} m_{n}^{2} \sin m_{n} t d t \\
& +\frac{2 i}{m^{2}} \int_{-\pi}^{\pi} \frac{\sin m t \sinh t}{\cosh ^{2} t} \sum_{n} b_{n} m_{n} \cos m_{n} t d t \\
& -\frac{2 i}{m^{2}} \int_{-\pi}^{\pi} \frac{\sin m t \sinh ^{2} t}{\cosh ^{3} t} \sum_{n} b_{n} \sin m_{n} t d t .
\end{aligned}
$$

Since each integrand on the right of the above equation is a bounded function on $[-\pi, \pi], \quad|f(m)|=|v(m)| \leqslant M / m^{2}, \quad M$ a constant. Hence
$\sum_{-\infty}^{\infty}|v(m)| \leqslant M \sum_{m \neq 0} 1 / m^{2}<\infty$. A simple computation shows that $v(m+i)=\int_{-\pi}^{\pi} \sin m t \sum_{n} b_{n} \sin m_{n} t d t$, so that $v(m+i)=0, m \neq m_{n}$, and $v(m+i) \neq 0, m=m_{n}$.
(ii) Consider

$$
f(z)=i \int_{-\pi}^{\pi} \frac{\sin z t}{\sinh t} \sum_{n} b_{n}\left(1-\cos m_{n} t\right) d t
$$

where $\sum_{n} b_{n}=0, \sum_{n}\left|b_{n}\right| m_{n}^{2}<\infty$, and the set of integers $\left\{m_{n}\right\}$ has density zero. Proceed as in the proof of (i) and conclude that $f(z)$ is of exact type π, $u(m)=0$ for all m, and $|f(m)|$ is bounded for all m. Integrate $f(m)$ by parts twice and obtain

$$
\begin{aligned}
f(m)= & \frac{-2 i}{m^{2}} \int_{0}^{\pi} \frac{\sin m t}{\sinh t} \sum_{n} b_{n} m_{n}^{2} \cos m_{n} t d t \\
& +\frac{4 i}{m^{2}} \int_{0}^{\pi} \frac{\sin m t \cosh t}{\sinh ^{2} t} \sum_{n} b_{n} m_{n} \sin m_{n} t d t \\
& +\frac{2 i}{m^{2}} \int_{0}^{\pi} \frac{\sin m t}{\sinh t} \sum_{n} b_{n}\left(1-\cos m_{n} t\right) d t \\
& -\frac{4 i}{m^{2}} \int_{0}^{\pi} \frac{\sin m t \cosh ^{2} t}{\sinh ^{3} t} \sum_{n} b_{n}\left(1-\cos m_{n} t\right) d t
\end{aligned}
$$

Since each integrand on the right of the above equation is a bounded function on $[0, \pi]$, we once again conclude $\sum_{-\infty}^{\infty}|v(m)|<\infty$. Since $u(m+i)=\int_{-\pi}^{\pi} \cos m t \sum_{n} b_{n} \cos m_{n} t d t, \quad u(m+i)=0, \quad m \neq m_{n}, \quad$ and $u(m+i) \neq 0, m=m_{n}$.

References

1. R. P. Boas, Jr., "Entire Functions," Academic Press, New York, 1954.
2. R. P. Boas, JR., A uniqueness theorem for harmonic functions, J. Approx. Theory 5 (1972), 425-427.
3. G. H. Hardy and W. W. Rogosinski, "Fourier Series," Cambridge Univ. Press, Cambridge, England, 1944.
4. F. Oberhettinger, "Fourier Expansions," Academic Press, New York, 1973.
