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Carlson’s theorem [1, p. 153] states that an entire function of exponential
type 7 less than 7 must vanish identically if it vanishes at the integers. Let
S(@)=u(z) + iv(z)(u,v real). It is not enough to assume that u(m)=0,
m=0,£1, £2,.., in order to conclude f(z) =0, but it is known to be
sufficient to have both u(m)=0 and u(m +i)=0, m=0, £1, £2,... (see
[2]). Here I show that if f(z) satisfies mild restrictions on its growth on the
real axis and w(m)=0, then f(z)=0 provided that u(m+i)=0 or
v(m + i) =0, except on a set of integers of density less than 1 — (/7). Hence
I consider a somewhat more restricted class of functions than in [2], but
obtain much sharper uniqueness theorems.

I thank Professor R. P. Boas for suggesting the problem.

THEOREM 1. Let f(z) be an entire function of exponential type T less
than m. Let f(m)=u(m) + iv(m), u(m)=0, m=0, 1, £2,.., | f(m)| <M,
m=0,4+1,+2,.., and > % |v(m)| < oo. If u(m + 1) =0 except on a set of
points of density less than 1 — (t/rn), then f(z) = 0.

Proof. Since f(z) is of exponential type 7 less than 7 and is bounded at
the integers, it follows from Cartwright’s theorem [1, p. 180] that f(x) is
bounded for all real x. Hence f(z) has the representation

sin nz sinnz  zsinmz . (—1)"f(n)
0 A
+/0) nz + i1 = hz—n)

f(&)=/"(0)

I

(see [1}, p.221). Set z=m + i, keeping in mind that f(m)=iv(m) and
sin n(m + i) = i(—1)™ sinh 7, to obtain
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, sinh - sinh 7

w' (0)(=1)"

flm+)=v'0)(-1)""" —

msinh © sinh 7
Rt ¢ —1 m+1__ "
n(m* + 1) wOCD n(m*+ 1)
p Sinh 7 (=D"v(n)

T h(m—n+i)
sinh 7 (D" v(n)

+i_1m+l \" —.
=D T n(m—n+i)

+ 2(0)(—1)"+!

+ m(___l)m+

Multiply both sums on the right of the above equation by
(m —n) —i/(m —n) — i to obtain

Slm+ =0 @-1y" T gy ) 1yn ST

ms1 Msinhz ) me1 Sinhmw
+msinh7z v D" —n)o(n)
T a5 nlm—n)’+1]
_ imsinhz (. (=D "*'y(n)
n o nl(m—n) +1]
N isinhz o, (=1)""*Y(m — n) v(n)
T a0 nl(m—n)* + 1]
sinhz (. (=1)""""'o(n)
n monl(m—n) + 1)
We then have
Ref(n + i) = u(m +1) == [o/(0)(=1)"+ 001" o

L (=1)"""(m —n)v(n) v (=)™ "v(n)
+m%0 n[(m—n)* +1] ,,}:on[(m—n)2+1] ’

—sinh #

Imf(m+i)=vim+i)= - l)m

[u'(ox—l)m—' o(0) o

A (=1)"""(m—n)v(n) (—1)"""v(n)
+%o n[(m—n)* + 1] _mngon[(m—n)zﬂl '
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By [4,p. 13| witha=b=1, [ ==,

5 =)™ "(m—n) _msinh x

sin(m —n)x=—i— , —a<x<m
S (m—n)t+1 ( ) sinh 7

Since the convolution of the Fourier coefficients of two functions yields the
Fourier coefficients of the product of the functions (see [3], p. 23) we have
that

D" m—n) v(n)
S Ay 1]

is the mth Fourier coefficient of

—in sinh x v(n)
. e’ —n<x <
sinhm  F, n

Similarly, by {4, p. 12}, we have, fora=b=1, =,

=, (=nHm-r 7 cosh x
————cos(m — n) x = ———, —TL XL,
2 Ty <<

so that

) (=D"""v(n)

n#0 nl(m - n)2 +1 I
is the mth Fourier coefficient of

7 cosh x v(n) ,
( )e’"", —-n<x<

sinhm 7y n

Also, v(0)(—1)"m/(m* + 1) is the mth Fourier coefficient of

— iv(0) 7 sinh x

. L _7[<x<7[.
sinh &

ac m
. =D"m
iv(0 —_— =
0) _ZOO " sin mx
Since a,,= (—1)", m=0, +1, +2,..., are not the Fourier coefficients of any
absolutely integrable function, we must have v'(0) = 0.
Hence,

u(m + i) =:Si::£ [U(O)(——l)’" m2m+ i +m go (_,lli(,;, —(”;)‘2 _’:_)ll)](ﬂ)

(=1)"""v(n)
Zo nl(m— n)* + 1]]
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is the mth Fourier coefficient of

F(x)=

—in sinh x y o(n) .
. e
sinhn ‘o n

sinh 7 i dx

—sinh 7 [ —iv(0) 7 sinh x + 1 d
n

7 cosh x v(n) pinx

N 1) —7T<X<7t.
sinhn 7, n

Simplifying, we find that u(m + i) is the mth Fourier coefficient of

F(x)=iv(0) sinh x + cosh x )’ o) e~

nzo 1

. - ; s o)
+isinhx ) wv(n)e™ —coshx ) () e,
n+0 n+0 n

F(x)=isinhx Y v(n)e™, —a<x<m

— Q0

The hypothesis implies that [* _ F(x) e~ =0 for a sequence of integers 4,
of density greater than z/z. By [1,p.236] (with a change of variable)
F(x)=isinhx Y®_ v(n)e™™ vanishes for almost all x in (—=, 7). Since
sinhx=0 if and only if x=0, we conclude v(n)=0. Hence
f(n)=u(n) + iv(n) =0 for all n, and by Carlson’s theorem f(z) = 0.

THEOREM 2. With the hypotheses of Theorem 1, if v(m +i)=0 except
on a set of points of density less than 1 — (t/7), then f(z)= 0.

Proof. Recall that

D"

vim+i)=
(m + ) mt 41

' O)=1)""" —v(0)

—sinh 7 [
n

L (=)™ "(m —n) v(n)
+%o n[(m—n)* +1]
< (=D""v(n)

_”’%on[(m—'n)wl]]'

Proceeding as in the proof of Theorem 1, we conclude that v(m + i) is the
mth Fourier coefficient of

Glx)=— sinh 7 [—v(O) n i:oshx iy n_sinhx S v(n) oins
/4 sinh 7 sinhn 7 n
1 d {mcoshx v(n) s
R T Z e $ s —<Xx< 7.
i dx | sinhn 7, n }
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Simplifying, we find that v(m + i) is the mth Fourier coefficient of

G(x)=wv(0)cosh x + isinh x oln) e"™ —isinhx ) o) einx

n+0 n#0 n

+coshx ) v(n)e™,

n+0

G(x)=coshx > wv(n)e™, —T<x< T

— 00
Now continue as in the proof of Theorem 1, with F(x) replaced with G(x).
The type 7 is critical, as is shown in Theorem 3.
THEOREM 3. There exist entire functions f(z) of exact type m with
fm)=u(m) + iv(m), um)=0, m=0, +1, 1+2,..., | f(m)| <M, m=0, +1,
+2,..., and Y}.°_|v(m)| < oo, such that either (i) v(m+i)=0, or (ii)

u{m + i) =0, in either case except on a set of integers {m,} of density zero,
but f(z)#0.

Proof. (i) Consider

sin zt

f(2)=i f Zb,,smm tdt,

_.cosht

where b, >0, 3, b,m2 < oo, and the set of integers {m,} has density zero.
By |1, p. 108] f(z) is of exact type 7. Since the integrand is real on the real
axis, f(m) is pure imaginary, and wu(m)=0 for all m. Also,
|sin mt|/cosh ¢ < 1, so that | f(m)| < 3,16, [~ |sinm, t|dt <27 Y, b, < 00,
and | f(m)| is bounded for all m. Integrating f(m) by parts twice, we find
that

™ sin mt - .
N\ b, sinm, ¢t dt

==

o cosht<;

N'b,m?sinm,tdt
_ncosht<""

i J" sin mt
me

= N"b om, cosm,tdt
2 cosh’t = """ "

2i 7 sinmtsinht
i

2i (7 sinmtsinh?t .
- __———S

h7y b, sinm,tdt.
m*J)_, cos

Since each integrand on the right of the above equation is a bounded
function on [—m, z|, |f(m)|=|v(m)|<M/m?, Ma constant. Hence
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N Jom) <MY, .0 1/m* <. A simple computation shows that
v(m+i)=["_sinmt) , b,sinm,tdt, so that v(m+i)=0, m#m,, and
vim+i)#0, m=m,.

(ii) Consider

i t
re=if —S-‘-rlhz—th b,(1 — cos m, 1) dt,

where 3, b,=0, Y, |b,| m: < oo, and the set of integers {m,} has density
zero. Proceed as in the proof of (i) and conclude that f(z) is of exact type 7,
u(m) =0 for all m, and | f(m)| is bounded for all m. Integrate f(m) by parts
twice and obtain

% sinmt .

2i )
Sf(im)= —JO saht ~ b,m, cos m,tdt

= sin mt cosh ¢ ]
J zb,,m,, sin m,t dt

"~ sinh?t

* sin mt
j smhtz,,‘b(l cos m, 1) dt

f sin mt cosh? ¢

i X b,(1 —cosm,t)dt.

Since each integrand on the right of the above equation is a bounded
function on [0,7], we once again conclude Y ®_ |v(m)| < co. Since
um+i)y={" _cosmty ,b,cosm,tdt, u(m+i)=0, m#m,,  and
um+i)#0, m=m,.
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